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Abstract. An analogy exists between a coding theorem and attractors considered as
multifractals. The average smallest wordlength of orderτ for the coding theorem is analogous
to the average smallest volume of orderτ . Diminishing characteristic means for measuring the
radii of spheres containing points on an attractor decrease the dimensionality which is always
less than the Hausdorff dimension in non-uniform systems. The Rényi entropy is the lower
bound to the average largest wordlength, and the logarithm of the reciprocal of the average
smallest volume of orderτ . The asymptotic distributions for minimum length and volume are
derived.

1. Introduction

The Ŕenyi entropy, or the entropy of orderα, is an interpolation formula connecting the
Shannon (α = 1) and Hartley (α = 0) entropies. The Shannon entropy is the lower
bound to the average code length for a noiseless channel in a uniquely decipherable code
(Feinstein 1958). Campbell (1965) gave a generalization to include code lengths of order
τ = (1− α)/α, where the Ŕenyi entropy is the lower bound on the code lengths. The
generalization involves a measure of the largest wordlengths. Regarding a measure of the
smallest wordlengths, we shall derive an upper bound on the average smallest code length
of orderτ .

The Ŕenyi entropy has also been implicated in the definition of the generalized
dimension of strange attractors (Grassberger and Procaccia 1983). There is a close
analogy between strange attractors and multifractals (Schroeder 1991). Multifractals can
be generated on a fractal support of the unit interval by removing a number of open
intervals leaving behind line segments of lengthri separated by holes. Each lengthri
has a probabilitypi , and after an infinite number of iterations we are left with specks of
dust having given probabilities. These specks, or density of points, are what characterize
strange attractors. More specifically, we go to some point on or near the attractor and ask
for the number of points on the orbit within a distancer of this point as we make the
radiusr of the sphere enclosing these points which are small in comparison with the size
of the attractor (Abarbanel 1996). The average volume of spheres of orderτ containing the
density of points, in the limit as the radius shrinks to zero, will play the same role as the
average smallest code length of orderτ in the coding theorem. Since this weighted mean is
analogous to that of the mean code length of orderτ , we are able to apply the same approach
to derive upper bounds on the average smallest volumes, or equivalently, lower bounds on
the negative of their logarithms. Thus, by a mere change in terminology, the generalized
coding theorem is applicable to strange attractors when considered as multifractals.
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2. Entropies, inequalities and monotonic functions

The set of probabilitiesp1, p2, . . . , pN can either stand for the probabilities ofN input
symbolsx1, x2, . . . , xN that are to be encoded, or the probabilities for fractal segments of
lengthsr1, r2, . . . , rN . A message ofN symbols will contain on averagep1N occurrences
of the first symbol,p2N occurrences of the second and so on. The probability of this
particular message will be

p̃N =
N∏
i=1

p
piN

i

wherep̃ is the geometric mean of the probabilities. The Shannon entropy is defined as the
logarithm of the reciprocal of the geometric mean of the probabilities of a typically long
sequence (Shannon and Weaver 1959)

H1(p) = log(1/p̃) = −
N∑
i=1

pi logpi. (1)

The probabilitiespi > 0 form a complete distribution,
∑N

i=1pi = 1, and the logarithm is
to the based > 1. The reciprocal of the geometric mean is a large number representing
the ‘thermodynamic’ probability of a given state (Lavenda 1991). The geometric mean of
the probabilities,p̃, is Schur-convex because its logarithm,

∑N
i=1pi logpi , is Schur-convex.

The negative of the latter is the Shannon entropy and it is Schur-concave.
Based upon the concavity of the Shannon entropy, (1), it follows that ifqi > 0 and

qi 6= pi

−
N∑
i=1

pi log

(
pi

qi

)
6 0. (2)

This is known as Shannon’s inequality (Aczél and Daŕoczy 1975), and provides the
motivation for using majorization as a means of deriving many different forms of
inequalities.

In a state of uniform probability,pi = 1/N , and Shannon’s entropy reduces to Hartley’s
entropy

H0 = logN (3)

who believed that entropy should depend on the number of different kinds of objects, not
on their probabilities. Ŕenyi proposed:

Hα = 1

1− α log
N∑
i=1

pα (4)

as an interpolating formula which spans the gamut between the Shannon (1) and Hartley
(3) entropies. In the limit asα → 1, the Ŕenyi entropy (4) transforms into the Shannon
entropy (1), while in the limit asα→ 0, it becomes the Hartley entropy (3).

The components of a vectorx = (x1, x2, . . . , xN) are said to be ‘less spread out’ or
‘more nearly equal’ than those of a vectory = (y1, y2, . . . , yN) if x is majorized byy:
x ≺ y. Interest in majorization arises by asking for conditions onx and y in order that
the inequality

∑N
i=1 ϕ(xi) 6

∑N
i=1 ϕ(yi) holds for all convex functionsϕ. A necessary and

sufficient condition for the inequality to hold for all convex functionsϕ is thatx be majorized
by y (Hardy et al 1952). More specifically, we may say thatx is weakly majorized byy,
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which we will denote byx ≺w y, if
∑L

i=1 x[i] 6
∑L

i=1 y[i] , for L = 1, . . . , N , where the
x[i] are ordered from largest to smallest,x[1] > · · · > x[N ] (Marshall and Olkin 1979).

Since the probabilitiespi > 0, and form a complete distribution, it follows that
(1/N, . . . ,1/N) ≺ p. If ϕ is any Schur-convex function thenϕ(p) > ϕ(1/N). The
Shannon entropy being Schur-concave provides a measure of the degree of uniformity of
the distribution; it is bounded above by the Hartley entropy,H1 6 H0. Moreover, since the
Rényi entropy (4) is Schur-concave on the open intervalα ∈ (0, 1), it follows that

H1 6 Hα 6 H0. (5)

The Ŕenyi entropy is a monotonically decreasing function ofα on the open interval(0, 1).
The first inequality in (5) is Jensen’s inequality,(Epr)1/r 6 exp(E logp) for r = −(1−α),
and E denotes expectation. The larger the Rényi entropy,Hα, the more uniform the
distribution is.

The Shannon entropy (1) is the logarithm of the reciprocal of the weighted mean

Mϕ(p) = ϕ−1

( N∑
i=1

piϕ(pi)

/ N∑
i=1

pi

)
for ϕ(p) = logp. For purposes of characterization, we admit the possibility of
an incomplete distribution,

∑N
i=1pi 6 1. Incomplete distributions are necessary

in order to reinstate the correct functional form in the entropy expressions so that
properties such as additivity, homogeneity, and maximality become manifest (Aczél and
Daróczy 1975). The obvious conditions to impose on the functionϕ are that it is
continuous and strictly monotonic, thereby possessing an inverseϕ−1 which satisfies
the same conditions (Hardyet al 1952). Consequently,ϕ has to be a logarithm,
logp, or a power, pγ . These functions are the only two continuous and strictly
monotonic functions whose weighted means satisfy exp(logp) = p andMγ (p) = p for
N = 1, and are first-order homogeneous functions: exp(

∑N
i=1 λpi logλpi/

∑N
i=1 λpi) =

λ exp(
∑N

i=1pi logpi/
∑N

i=1pi) andMγ (λp) = λMγ (p). Furthermore, if we invoke the
condition of ‘stability’ (Acźel and Daŕoczy 1975)

lim
p2→0

Mγ (p1, p2) = p1

thenγ +1> 0, or settingγ = α−1 requiresα > 0. Although incomplete distributions are
useful for entropy characterization, we will henceforth only deal with complete distributions.

In an analogous way that the Rényi entropy (4) is an interpolation formula connecting
the Shannon, log(1/p̃), and Hartley, logN , entropies (5), the weighted mean

M−(1−α)(p) =
( N∑
i=1

pαi

)−1/(1−α)
(6)

connects the geometric mean of the probabilities and the state of uniform probability:

1

N
6
( N∑
i=1

pαi

)−1/(1−α)
6 p̃. (7)

Hence, the weighted mean (6) is a monotonically increasing function ofα on the open
interval (0, 1), and is Schur-convex. Its negative can be interpreted as an entropy reduction
which is Schur-concave. It constitutes a multidimensional generalization of the one-
dimensional expression for strictly stable distributions (Lavenda 1995). This is still another
reason for restricting the characteristic exponentα to lie in the open interval(0, 1).
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The weighted mean (6) is comparable with

M−(1−α)(q) =
( N∑
i=1

piq
−(1−α)
i

)−1/(1−α)
(8)

which lies between the geometric mean,q̃ = ∏N
i=1 q

pi
i , and the harmonic mean,̂q =

(
∑N

i=1pi/qi)
−1:

q̂ 6
( N∑
i=1

piq
−(1−α)
i

)−1/(1−α)
6 q̃.

Consequently, the weighted mean (8) is also a monotonically increasing function ofα on
the open interval(0, 1). However, unlike (6) which is Schur-convex, (8) is Schur-concave
for fixed p.

Since 1/N ≺ p, the uniform state is majorized byp, and (6) is Schur-convex, it follows
that ( N∑

i=1

pαi

)−1/(1−α)
− 1

N
> 0. (9)

Likewise the probabilitiesq also majorize the uniform state 1/N ≺ q, so that

1

N
−
( N∑
i=1

piq
−(1−α)
i

)−1/(1−α)
> 0 (10)

because (8) is Schur-concave for fixedp andα < 1. Adding inequalities (9) and (10) gives( N∑
i=1

pαi

)−1/(1−α)
>
( N∑
i=1

piq
−(1−α)
i

)−1/(1−α)
(11)

showing thatq ≺ p. Shannon’s inequality (2) is contained in (11) as a limiting case, namely
asα→ 1.

Finally, an additional inequality will be of use when discussing characteristic average
dimensions. From the fact thatMr(a) < Ms(a) for r < s, unless the numbersa are all
equal (Hardyet al 1952), we have the additional inequality(

∑N
i=1piq

−(1−α)
i )−1/(1−α) >

(
∑N

i=1piq
−τ
i )−1/τ sinceα < 1. In view of inequality (11) we now have( N∑

i=1

pαi

)−1/(1−α)
>
( N∑
i=1

piq
−τ
i

)−1/τ

(12)

whereτ = (1− α)/α. Inequality (12) could have been derived directly from the Hölder
inequality: ( N∑

i=1

xai

)1/a( N∑
i=1

ybi

)1/b

6
N∑
i=1

xiyi (13)

with xi = p1/τ
i , yi = p−1/τ

i qi , the exponentsa = (1− α) andb = −τ satisfy the condition
1/a+1/b = 1, and

∑N
i=1 qi 6 1. The coding and multifractal theorems attribute a physical

significance to the weighted mean on the right-hand side of (12).
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3. A coding theorem revisited

The coding theorem for a noiseless channel is based on the Kraft inequality:
N∑
i=1

d−κi 6 1. (14)

This is a necessary and sufficient condition for the existence of a unique and decipherable
code (Feinstein 1958). Theκi are the lengths of the code words,N is the number of input
symbols, and the alphabet containsd > 1 symbols. If the wordlengthsκi are to satisfy (14)
we must have

d−κi 6 N−1

for at least onei, and consequently for the largest wordlength (Campbell 1965).
The length of a word is the number of symbols it contains. Dividing the number of

different words of lengthκi that can be formed fromd symbols,dκi , by total number of
words,n =∑N

i=1 d
κi , gives the probabilityqi = dκi /n of a word of lengthκi . As a measure

of the average code length of orderτ we choose the function:

L(τ ) := −1

τ
log

( N∑
i−1

pid
−κiτ

)
. (15)

The justification for calling (15) an average code length is based on the extreme limits of
(15) obtained by lettingτ tend to zero and infinity. In the limit asτ → 0 (α → 1), the
measure of the wordlength of order zero is proportional to the weighted mean

L(0) = lim
τ→0
L(τ ) =

N∑
i=1

piκi = κ̄

while, in the limit asτ →∞, the entire sum reduces to a single term (Hardyet al 1952)

L(∞) = lim
τ→∞ logM−τ (dκ) = κmin (16)

whereκmin is the smallest of the numbersκ1, . . . , κN . The measure of the average smallest
wordlength of orderτ is a monotonic decreasing function ofτ . L(0) is the usual measure
of the mean length, whileL(∞) is the measure that would be employed to measure the
smallest wordlengths. The exponentτ is therefore related to how lengths are measured: the
larger the value ofτ , the more weight is given to smaller values ofκi .

Inequality (12) places upper limits on the average and smallest wordlengths. In the limit
asτ → 0, (α→ 1), inequality (12) is

logn−H1 > κ̄ . (17)

The geometric–harmonic mean inequality,
N∑
i=1

d−κi > Nd−κ̄

and Kraft inequality (14), provide a lower bound to the average wordlength,κ̄ > logN .
Inserting this into (17) leads to

logn > H0+H1

placing an upper bound on the sum of the Shannon and Hartley entropies. In the opposite
limit as τ → 0, (α→ 0), inequality (12) becomes

logn−H0 > κmin.
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The equality sign in (12) is achieved when

dκi /n = pαi
/ N∑

i=1

pαi

or

κi = logn+ α logpi − log

( N∑
i=1

pαi

)
.

However, because of the intermediary inequality (11),dκ/n ≺ p so that the optimal value
of κi is

κi = logn+ logpi.

As the probability of a wordlength tends to zero, the number of different words of all lengths
must increase so as to render their product,pin, essentially constant. The same requirement
is used to derive the limit laws of probability theory.

Campbell’s (1965) use of the Ḧolder inequality, in which he compared the probabilities
d−κi with pi , further required the Kraft inequality (14). Whereas Campbell obtained a
lower bound to the averagelargest code length of orderτ , we obtain an upper bound to
the averagesmallestcode length of the same order.

Because of the Kraft inequality (14), we must consider the weak majorizationd−κ ≺w p

that drops the equality constraint on the total sum (Marshall and Olkin 1979). As before,
we obtain the same string of inequalities:( N∑

i=1

pαi

)−1/(1−α)
>
( N∑
i=1

pid
κi(1−α)

)−1/(1−α)
>
( N∑
i=1

pid
κiτ

)−1/τ

. (18)

Equality between the first and last weighted means in (18) is obtained when (Campbell
1965)

d−κi = pαi
/ N∑

i=1

pαi

or

κi = −α logpi + log

( N∑
i=1

pαi

)
. (19)

From this Campbell concluded that aspi → 0, the optimum value ofκi is asymptotically
equal to−α logpi . The minimization of the average code length, subject to the Kraft
inequality (14), leads to the result that the best code length of probabilitypi is asymptotic to
− logpi (Feinstein 1958). Large wordlengths have small probabilities. The optimum value
of κi being asymptotic to−α logpi , would be an improvement, since the wordlength would
be smaller than− logpi becauseα < 1 (Campbell 1965). However, the first inequality (18)
is only satisfied ifd−κi = pi , or equivalently,κi = − logpi .

Since the Ŕenyi entropy is intermediate between the Hartley and Shannon entropies,
and in view of inequalities (17) and (16) we have proved the following theorem.

Theorem 1.The average smallest code length of orderτ , can never be greater than the
difference between the logarithm of the total number of words and the Rényi entropy:

logn−Hα > L(τ ).
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The importance of the Ŕenyi, in comparison with the Shannon entropy, lies in the
versatility of how we measure lengths, or, for that matter, any extensive quantity. If the
conventional measure ofmean length is used, the Shannon entropy is its lower bound.
However, if we are interested in intermediate measures of length, lying between maximum
or minimum lengths, then the Rényi entropy of orderα = (1+ τ)−1 determines the lower
(upper) bound on the largest (smallest) weighted mean of orderτ .

4. A coding theorem for strange attractors

The Hausdorff dimension ofN equal-length pieces of sizer is NrDH = 1. If the fractal
consists ofN different lengths,ri , the Hausdorff dimension is determined by the condition:

N∑
i=1

r
DH
i = 1. (20)

If each segmentri occurs with probabilitypi the generator requires two exponents, one
for the support of the fractal,̃Dα, and one for the probabilities,α. The condition which
generalizesNrDH = constant, can be written as (Halseyet al 1986)

N∑
i=1

pαi r
D̃α(1−α)
i = 1. (21)

The generalized dimension,̃Dα, coincides with the Hausdorff dimension,DH , for α = 0.

Expression (21) appears somewhat similar to the weighted mean (8) when we identifyr
D̃α
i

with the probabilitiesqi . However, in that case,qi cannot depend upon the exponentα
so thatD̃α must coincide with the Hausdorff dimension,DH . This allows us to identify
the probabilitiesqi with rDHi which forms a complete set on account of (20). Rather, what
changes is the dimension of the embedded object which is determined by the exponentα.

p-majorization,rDH p � 1/N , with respect to a set of probabilitiespi > 0 for everyi,
implies (Marshall and Olkin 1979)

N∑
i=1

pir
−DH (1−α)
i > N1−α (22)

for all convex functionsq−(1−α)i whereα < 1. The two intervals of the uniform Cantor set
have equal probabilities, and (22) reduces to an equalityr−DH = N . In the limitα→ 1, (22)
reduces to the identity

∑N
i=1pi = 1, while in the limit asα→ 0, inequality (22) expresses

the fact that the harmonic meanq̂ = 1/
∑N

i=1pi/qi is always less than the arithmetic mean,∑N
i=1 qi/N unless all theqi ’s are equal.

We are interested in the way the number of points, or specks of dust, within a sphere
of radiusri , scales as the radius shrinks to zero. We shall see that the volume of the sphere
behaves as̆rDα , wherer̆ is some mean radius, andDα is the dimensionality of the embedded
object. This is not the same as theD̃α appearing in (21) because we have insisted that the
probabilities,qi , be independent of the exponentα.

In the same way we introduced a measure of the length of a code, we need a measure
of volume. Since we are now concerned with probabilities which are power laws and not
exponentials, we define the mean volume of orderτ as:

V(τ ) =
( N∑
i=1

pir
−DHτ
i

)−1/τ

. (23)



5658 B H Lavenda

This mean volume is a decreasing function ofτ :

V(0) = r̃DH > V(1) = r̂DH > V(∞) = rDHmin (24)

wherer̃ =∏N
i=1 r

pi
i is the geometric mean radius,̂rDH = (∑N

i=1pi/r
DH
i )−1 is the harmonic

mean volume, and (Hardyet al 1952)

lim
τ→∞V(τ ) = r

DH
min

is the minimum volume. The larger the value ofτ , the more weight is given to the smaller
values ofri .

On the strength of inequality (12), the logarithm of the reciprocal of the measure of
volume of orderτ has a lower bound

Hα(p) <
1

τ
log

( N∑
i=1

pir
−DHτ
i

)
(0< τ <∞) (25)

given by the Ŕenyi entropy. This can be verified from the Hölder inequality (13) by setting
xi = p

1/τ
i , yi = p

−1/τ
i r

DH
i , with exponentsa = (1− α) and b = −τ , independently of

whether the probabilitiesrDHi form a complete distribution or not.
Inequality (25) leads to a sense of reduced dimensionality of the attractor in comparison

with the Hausdorff dimension of the fractal support in which it is embedded. The
dimensionality of the attractor is governed by the orderτ . For instance, in the limit as
τ → 0, (25) becomes

DH >
log(1/p̃)

log(1/r̃)
= H1(p)

log(1/r̃)
= D1 (26)

which is the ‘information’ dimension becauseH1(p) is the Shannon entropy. Theτ → 0
limit selects out the geometric mean of the radii as the characteristic average distance. For
equal probabilities, the Shannon entropy becomes the Hartley entropy and uniform radii
would lead to the equality in (26). The crucial point is that we cannot vary the entropy
in the numerator of (26) without a corresponding variation in how we measure distance
in the denominator. In other words, every entropy function will have a corresponding
characteristic measure of distance.

The orderτ = 1 selects the harmonic mean, with dimension

D1/2 = log
N∑
i=1

p
1/2
i

/
log

(
1

/
DH

√
r̂DH

)
.

Increasing values ofτ , or decreasing values ofα, give more weight to smaller characteristic
distances with decreasing dimensionality. In the limit asτ →∞ the dimension

D0 = logN

log(1/rmin)

is reached. This is the smallest embedding dimension possible. It would appear that the
Hartley entropy would require uniform probability which, in turn, would imply uniform
length. However, the Hartley entropy results from taking the limitα → 0 and not from
the assumption of uniform probability. Hence,D0 cannot be associated with the Hausdorff
dimension without imposing the condition of uniform length and probability.

Introducing the arithmetic–geometric inequality,
∑N

i=1p
2
i >

∏N
i=1p

pi
i , unless all thepi ’s

are equal, into the numerator of the information dimension (26) would likewise necessitate
the use of the inequality

∑N
i=1piri >

∏N
i=1 r

pi
i in the denominator. There would then result

D2 = log
∑N

i=1p
2
i

log(
∑N

i=1piri)
(27)
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which is known as the ‘correlation’ dimension (Grassberger and Procaccia 1983). However,
this is not a true dimension because the measure of (largest) volume of orderτ = 1
is rDH 6= r̄DH . Furthermore, the subscript 2 has nothing to do with the value of the
characteristic exponentα which must lie in the open interval(0, 1).

Thus we have proved the following.

Theorem 2.With α = (1+τ)−1 andα ∈ (0, 1), the negative of the logarithm of the average
volume of orderτ cannot be less than the Rényi entropy. The orderτ determines the
dimensionality of the multifractal, or attractor, and it cannot be greater than the Hausdorff
dimension in which it is embedded. Equality occurs only in the limit of uniform probabilities
and lengths.

Certainly, there are probabilistic overtones in so far as the various means that occur at
different orders, corresponding to different entropies, should correspond to the most probable
value of the quantity measured (Lavenda 1998).

5. Extreme value distributions for wordlengths and fractal volumes

Consider a stationary sequence of wordlengths{KN ;N > 2}. We want to determine the
distribution of the largest valuěK = max16i6N Ki for large values ofN . We can then
derive the distribution for the smallest wordlength by the symmetry principle for extreme
value distributions (Gumbel 1958).

The sequenceKi constitutes a set of independent and identically distributed (i.i.d.)
random variables. The probability for any wordlengthKi being greater thanκ is exponential

Pr(Ki > κ) = F̄ (κ) = d−κ (28)

whereF̄ (κ) = 1−F(κ) is the tail of the distributionF(κ). The probability that the largest
valueǨ will not exceedκ is therefore

Pr(Ǩ 6 κ) = FN(κ) = [1− d−κ ]N. (29)

Because of the i.i.d. property, the probability that the largest value will not exceedκ is the
product of each of the individual probabilities of not exceedingκ. Using a method developed
by Craḿer (Gumbel 1958), we introduce the mode of the largest valueκ̃ = logN , which is
also the characteristic largest value (Gumbel 1958). Dividing and multiplying the last term
in (29) byN gives

Pr(Ǩ 6 κ) = FN(κ) =
[

1− d
−(κ−κ̃)

N

]N
.

The probability distributionǦ(κ) becomes

Ǧ(κ) = d−d−(κ−κ̃) (30)

for largeN . This asymptotic distribution is known as the double exponential distribution.
On the strength of the symmetry principle (Gumbel 1958), relating the largest and smallest
values, we may immediately write down the distributionĜ(κ) for the smallest wordlength
as

Ĝ(κ) = 1− dd(κ−κ̃) . (31)

The double exponential distributions (30) and (31) have support on the open interval
(−∞,∞). However, a necessary and sufficient condition for the existence of a uniform
code with a constant wordlengthκ is κ > logN , which is easily derived from the Kraft
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inequality (14). The same type of condition applies to the testing of materials where the
characteristic largest value logN would be analogous to the lower bound on the measured
strength of a material. This condition would make the Weibull distribution for the smallest
value the only acceptable asymptotic distribution for the smallest value. However, it is
often preferable to use the double exponential distribution for the smallest value (30) if the
location parameter logN is large enough since the probability of a value below thea priori
lower bound is negligible (Leadbetteret al 1983).

Turning to multifractals, consider a sequence of i.i.d. random radii{Ri;N > 2}. Their
common initial probability Pr(Ri 6 r) = F(r) = rD/v, wherev is the total fractal volume,
andD > 0, but otherwise arbitrary. We are interested in the distribution of the smallest
radius R̂ = min16i6N Ri . The probability that the smallest radius will exceedr is the
product of the probabilities of each individual value exceedingr or

Pr(R̂ > r) = F̄ N (r) =
[

1− r
D

v

]N
.

Writing v = v̄N , the asymptotic probability,Ĝ(r), for the smallest radius becomes for
largeN

Ĝ(r) = 1− d−(rD/v̄). (32)

This is the distribution for nearest neighbour, and it belongs to the the class of Weibull
distributions for the smallest value.
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